Showing posts sorted by date for query datapoint. Sort by relevance Show all posts
Showing posts sorted by date for query datapoint. Sort by relevance Show all posts

Talking to memory: Inside the Intel 8088 processor's bus interface state machine

In 1979, Intel introduced the 8088 microprocessor, a variant of the 16-bit 8086 processor. IBM's decision to use the 8088 processor in the IBM PC (1981) was a critical point in computer history, leading to the success of the x86 architecture. The designers of the IBM PC selected the 8088 for multiple reasons, but a key factor was that the 8088 processor's 8-bit bus was similar to the bus of the 8085 processor.1 The designers were familiar with the 8085 since they had selected it for the IBM System/23 Datamaster, a now-forgotten desktop computer, making the more-powerful 8088 processor an easy choice for the IBM PC.

The 8088 processor communicates over the bus with memory and I/O devices through a highly-structured sequence of steps called "T-states." A typical 8088 bus cycle consists of four T-states, with one T-state per clock cycle. Although a four-step bus cycle may sound straightforward, its implementation uses a complicated state machine making it one of the most difficult parts of the 8088 to explain. First, the 8088 has many special cases that complicate the bus cycle. Moreover, the bus cycle is really six steps, with two undocumented "extra" steps to make bus operations more efficient. Finally, the complexity of the bus cycle is largely arbitrary, a consequence of Intel's attempts to make the 8088's bus backward-compatible with the earlier 8080 and 8085 processors. However, investigating the bus cycle circuitry in detail provides insight into the timing of the processor's instructions. In addition, this circuitry illustrates the tradeoffs and implementation decisions that are necessary in a production processor. In this blog post, I look in detail at the circuitry that implements this state machine.

By examining the die of the 8088 microprocessor, I could reverse engineer the bus circuitry. The die photo below shows the 8088 microprocessor's silicon die under a microscope. Most visible in the photo is the metal layer on top of the chip, with the silicon and polysilicon mostly hidden underneath. Around the edges of the die, bond wires connect pads to the chip's 40 external pins. Architecturally, the chip is partitioned into a Bus Interface Unit (BIU) at the top and an Execution Unit (EU) below, with the two units running largely independently. The BIU handles bus communication (memory and I/O accesses), while the Execution Unit (EU) executes instructions. In the diagram, I've labeled the processor's key functional blocks. This article focuses on the bus state machine, highlighted in red, but other parts of the Bus Interface Unit will also play a role.

The 8088 die under a microscope, with main functional blocks labeled. This photo shows the chip's single metal layer; the polysilicon and silicon are underneath. Click on this image (or any other) for a larger version.

The 8088 die under a microscope, with main functional blocks labeled. This photo shows the chip's single metal layer; the polysilicon and silicon are underneath. Click on this image (or any other) for a larger version.

Although I'm focusing on the 8088 processor in this blog post, the 8086 is mostly the same. The 8086 and 8088 processors present the same 16-bit architecture to the programmer. The key difference is that the 8088 has an 8-bit data bus for communication with memory and I/O, rather than the 16-bit bus of the 8086. For the most part, the 8086 and 8088 are very similar internally, apart from trivial but numerous layout changes on the die. In this article, I'm focusing on the 8088 processor, but most of the description applies to the 8086 as well. Instead of constantly saying "8086/8088", I'll refer to the 8088 and try to point out places where the 8086 is different.

The bus cycle

In this section, I'll describe the basic four-step bus cycles that the 8088 performs.2 To start, the diagram below shows the states for a write cycle (slightly simplified3), when the 8088 writes to memory or an I/O device. The external bus activity is organized as four "T-states", each one clock cycle long and called T1, T2, T3, and T4, with specific actions during each state. During T1, the 8088 outputs the address on the pins. During the T2, T3, and T4 states, the 8088 outputs the data word on the same pins. The external memory or I/O device uses the T states to know when it is receiving address information or data over the bus lines.

A typical write bus cycle consists of four T states. Based on The 8086 Family Users Manual, B-16.

A typical write bus cycle consists of four T states. Based on The 8086 Family Users Manual, B-16.

For a read, the bus cycle is slightly different from the write cycle, but uses the same four T-states. During T1, the address is provided on the pins, the same as for a write. After that, however, the processor's data pins are "tri-stated" so they float electrically, allowing the external memory to put data on the bus. The processor reads the data at the end of the T3 state.

A typical read bus cycle consists of four T states. Based on The 8086 Family Users Manual, B-16.

A typical read bus cycle consists of four T states. Based on The 8086 Family Users Manual, B-16.

The purpose of the bus state machine is to move through these four T states for a read or a write. This process may seem straightforward, but (as is usually the case with the 8088) many complications make this process anything but easy. In the next sections, I'll discuss these complications. After that, I'll explain the state machine circuitry with a schematic.

Address calculation

One of the notable (if not hated) features of the 8088 processor is segmentation: the processor supports 1 megabyte of memory, but memory is partitioned into segments of 64 KB for compatibility with the earlier 8080 and 8085 processors. The 8088 calculates each 20-bit memory address by adding the value of a segment register to a 16-bit offset. This calculation is done by a dedicated address adder in the Bus Interface Unit, completely separate from the chip's ALU. (This address adder can be spotted in the upper left of the earlier die photo.)

Calculating the memory address complicates the bus cycle. As the timing diagrams above show, the processor issues the memory address during state T1 of the bus cycle. However, it takes time to perform the address calculation addition, so the address calculation must take place before T1. To accomplish this, there are two "invisible" bus states before T1; I call these states "TS" (T-start) and "T0". During these states, the Bus Interface Unit uses the address adder to compute the address, so the address will be available during the T1 state. These states are invisible to the external circuitry because they don't affect the signals from the chip.

Thus, a single memory operation takes six clock cycles: two preparatory cycles to compute the address before the four visible cycles. However, if multiple memory operations are performed, the operations are overlapped to achieve a degree of pipelining that improves performance. Specifically, the address calculation for the next memory operation takes place during the last two clock cycles of the current memory operation, saving two clock cycles. That is, for consecutive bus cycles, T3 and T4 of one bus cycle overlap with TS and T0 of the next cycle. In other words, during T3 and T4 of one bus cycle, the memory address gets computed for the next bus cycle. This pipelining significantly improves the performance of the 8088, compared to taking 6 clock cycles for each bus cycle.

With this timing, the address adder is free during cycles T1 and T2. To improve performance in another way, the 8088 uses the adder during this idle time to increment or decrement memory addresses. For instance, after popping a word from the stack, the stack pointer needs to be incremented by 2.5 Another case is block move operations (string operations), which need to increment or decrement the pointers each step. By using the address adder, the new pointer value is calculated "for free" as part of the memory cycle, without using the processors regular ALU.4

Address corrections

The address adder is used in one more context: correcting the Instruction Pointer value. Conceptually, the Instruction Pointer (or Program Counter) register points to the next instruction to execute. However, since the 8088 prefetches instructions, the Instruction Pointer indicates the next instruction to be fetched. Thus, the Instruction Pointer typically runs ahead of the "real" value. For the most part, this doesn't matter. This discrepancy becomes an issue, though, for a subroutine call, which needs to push the return address. It is also an issue for a relative branch, which jumps to an address relative to the current execution position.

To support instructions that need the next instruction address, the 8088 implements a micro-instruction CORR, which corrects the Instruction Pointer. This micro-instruction subtracts the length of the prefetch queue from the Instruction Pointer to determine the "real" Instruction Pointer. This subtraction is performed by the address adder, using correction constants that are stored in a small Constant ROM.

The tricky part is ensuring that using the address adder for correction doesn't conflict with other uses of the adder. The solution is to run a special shortened memory cycle—just the TS and T0 states—while the CORR micro-instruction is performed.6 These states block a regular memory cycle from starting, preventing a conflict over the address adder.

A closeup of the address adder circuitry in the 8086. From my article on the adder.

A closeup of the address adder circuitry in the 8086. From my article on the adder.

Prefetching

The 8088 prefetches instructions before they are needed, loading instructions from memory into a 4-byte prefetch queue. Prefetching usually improves performance, but can result in an instruction's memory access being delayed by a prefetch, hurting overall performance. To minimize this delay, a bus request from an instruction will preempt a prefetch, even if the prefetch has gone through TS and T0. At that point, the prefetch hasn't created any bus activity yet (which first happens in T1), so preempting the prefetch can be done cleanly. To preempt the prefetch, the bus cycle state machine jumps back to TS, skipping over T1 through T4, and starting the desired access.

A prefetch will also be preempted by the micro-instruction that stops prefetching (SUSP) or the micro-instruction that corrects addresses (CORR). In these cases, there is no point in completing the prefetch, so the state machine cycle will end with T0.

Wait states

One problem with memory accesses is that the memory may be slower than the system's clock speed, a characteristic of less-expensive memory chips. The solution in the 1970s was "wait states". If the memory couldn't respond fast enough, it would tell the processor to add idle clock cycles called wait states, until the memory could respond.7 To produce a wait state, the memory (or I/O device) lowers the processor's READY pin until it is ready to proceed. During this time, the Bus Interface Unit waits, although the Execution Unit continues operation if possible. Although Intel's documentation gives the wait cycle a separate name (Tw), internally the wait is implemented by repeating the T3 state as long as the READY pin is not active.

Halts

Another complication is that the 8088 has a HALT instruction that halts program execution until an interrupt comes in. One consequence is that HALT stops bus operations (specifically prefetching, since stopping execution will automatically stop instruction-driven bus operations). A complication is that the 8088 indicates the HALT state to external devices by performing a special T1 bus cycle without any following bus cycles. But wait: there's another complication. External devices can take control of the bus through the HOLD functionality, allowing external devices to perform operations such as DMA (Direct Memory Access). When the device ends the HOLD, the 8088 performs another special T1 bus cycle, indicating that the HALT is still in effect. Thus, the bus state machine must generate these special T1 states based on HALT and HOLD actions. (I discussed the HALT process in detail here.)

Putting it all together: the state diagram

The state diagram below summarizes the different types of bus cycles. Each circle indicates a specific T-state, and the arrows indicate the transitions between states. The green line shows the basic bus cycle or cycles, starting in TS and then going around the cycle. From T3, a new cycle can start with T0 or the cycle will end with T4. Thus, new cycles can start every four clocks, but a full cycle takes six states (counting the "invisible" TS and T0). The brown line shows that the bus cycle will stay in T3 as long as there is a wait state. The red line shows the two cycles for a CORR correction, while the purple line shows the special T1 state for a HALT instruction. The cyan line shows that a prefetch cycle can be preempted after T0; the cycle will either restart at TS or end.

A state diagram showing the basic bus cycle and various complications.

A state diagram showing the basic bus cycle and various complications.

I'm showing states TS and T3 together since they overlap but aren't the same. Likewise, I'm showing T4 and T0 together. T4 is grayed out because it doesn't exist from the state machine's perspective; the circuitry doesn't take any particular action during T4.

The schematic below shows the implementation of the state machine. The four flip-flops represent the four states, with one flip-flop active at a time, generating states T0, T1, T2, and T3 (from top to bottom). Each output feeds into the logic for the next state, with T3 wrapping back to the top, so the circuit moves through the states in sequence. The flip-flops are clocked so the active state will move from one flip-flop to the next according to the system clock. State TS doesn't have its own flip-flop, but is represented by the input to the T0 flip-flop, so it happens one clock cycle earlier.8 State T4 doesn't have a flip-flop since it isn't "real" to the bus state machine. The logic gates handle the special cases: blocking the state transfer if necessary or starting a state.

Schematic of the state machine.

Schematic of the state machine.

I'll explain the logic for each state in more detail. The circuitry for the TS state has two AND gates to generate new bus cycles starting from TS. The first one (a) causes TS to happen with T3 if there is a pending bus request (and no HOLD). The second AND gate (b) starts a bus cycle if the bus is not currently active and there is a bus request or a CORR micro-instruction. The flip-flop causes T0 to follow T3/TS, one clock cycle later.

The next gates (c) generate the T1 state following T0 if there is pending bus activity and the cycle isn't preempted to T3. The AND gate (d) starts the special T1 for the HALT instruction.9 The T2 state follows T1 unless T1 was generated by a HALT (e).

The T3 logic is more complicated. First, T3 will always follow T2 (f). Next, a wait state will cause T3 to remain in T3 (g). Finally, for a preempt, T3 will follow T0 (h) if there is a prefetch and a microcode bus operation (i.e. an instruction specified the bus operation).

Next, I'll explain BUS-ACTIVE, an important signal that indicates if the bus is active or not. The Bus Interface Unit generates the BUS-ACTIVE signal to help control the state machine. The BUS-ACTIVE signal is also widely used in the Bus Interface Unit, controlling many functions such as transfers to and from the address registers. BUS-ACTIVE is generated by the complex circuit below that determines if the bus will be active, specifically in states T0 through T3. Because of the flip-flop, the computation of BUS-ACTIVE happens in the previous clock cycle.

The circuit to determine if the bus will be active next cycle.

The circuit to determine if the bus will be active next cycle.

In more detail, the signal BUS-ACTIVE-PRE indicates if the bus cycle will continue or will end on the next clock cycle. Delaying this signal through the flip-flop generates BUS-ACTIVE, which indicates if the bus is currently active in states T0 through T3. The top AND gate (a) is responsible for starting a cycle or keeping a cycle going (a1). It will allow a new cycle if there is a bus request (without HOLD) (a3). It will also allow a new cycle if there is a CORR micro-instruction prior to the T1 state (even if there is a HOLD, since this "fake" cycle won't use the bus) (a2). Finally, it allows a new cycle for a HALT, using T1-pre (a2).10 Next are the special cases that end a bus cycle. The second AND gate (b) ends the bus cycle after T3 unless there is a wait state or another bus request. (But a HOLD will block the next bus request.) The remaining gates end the cycle after T0 to preempt a prefetch if a CORR or SUSP micro-instruction occurs (d), or end after T1 for a HALT (e).

The BUS-ACTIVE circuit above uses a complex gate, a 5-input NOR gate fed by 5 AND gates with two attached OR gates. Surprisingly, this is implemented in the processor as a single gate with 14 inputs. Due to how gates are implemented with NMOS transistors, it is straightforward to implement this as a single gate. The inverter and NOR gate on the left, however, needed to be implemented separately, as they involve inversion; an NMOS gate must have a single inversion.

The bus state machine circuitry on the die.

The bus state machine circuitry on the die.

The diagram above shows the layout of the bus state machine circuitry on the die, zooming in on the top region of the die. The metal layer has been removed to expose the underlying silicon and polysilicon. The layout of each flip-flop is completely different, since the layout of each transistor is optimized to its surroundings. (This is in contrast to later processors such as the 386, which used standard-cell layout.) Even though the state machine consists of just a handful of flip-flops and gates, it takes a noticeable area on the die due to the large 3.2 µm feature size of the 8088. (Modern processors have features measured in nanometers, not micrometers.)

Conclusions

The bus state machine is an example of how the 8088's design consists of complications on top of complications. While the four-state bus cycle seems straightforward at first, it gets more complicated due to prefetching, wait states, the HALT instruction, and the bus hold feature, not to mention the interactions between these features. While there were good motivations behind these features, they made the processor considerably more complicated. Looking at the internals of the 8088 gives me a better understanding of why simple RISC processors became popular.

The bus state machine is a key part of the read and write circuitry, moving the bus operation through the necessary T-states. However, the state machine is not the only component in this process; a higher-level circuit decides when to perform a read, write, or prefetch, as well as breaking a 16-bit operation into two 8-bit operations.11 These circuits work together with the higher-level circuit telling the state machine when to go through the states.

In my next blog post, I'll describe the higher-level memory circuit so follow me on Twitter @kenshirriff or RSS for updates. I'm also on Mastodon as oldbytes.space@kenshirriff. If you're interested in the 8086, I wrote about the 8086 die, its die shrink process, and the 8086 registers earlier.

Notes and references

  1. The 8085 and 8088 processors both use a 4-step bus cycle for instruction fetching. For other reads and writes, the 8085's bus cycle has three steps compared to four for the 8088. Thus, the 8085 and 8088 bus cycles are similar but not an exact match. 

  2. The 8088 has separate instructions to read or write an I/O device. From the bus perspective, there's no difference between an I/O operation and a memory operation except that a pin on the chip indicates if the operation is for memory or I/O.

    The 8088 supports I/O operations for historical reasons, going back through the 8086, 8080, 8008, and the Datapoint 2200 system. In contrast, many other contemporary processors such as the 6502 used memory-mapped I/O, using standard memory accesses for I/O devices.

    The 8086 has a pin M/IO that is high for a memory access and low for an I/O access. External hardware uses this pin to determine how to handle the request. Confusingly, the pin's function is inverted on the 8088, providing IO/M. One motivation behind the 8088's 8-bit bus was to allow reuse of peripherals from the earlier 8-bit 8085 processor. Thus, the pin's function was inverted so it matched the 8085. (The pin is only available when the 8086/8088 is used in "minimum mode"; "maximum mode" remaps some of the pins, making the system more complicated but providing more control.) 

  3. I've made the timing diagram somewhat idealized so actions line up with the clock. In the real datasheet, all the signals are skewed by various amounts so the timing is more complicated. See the datasheet for pages of timing constraints on exactly when signals can change. 

  4. For more information on the implementation of the address adder, see my previous blog post

  5. The POP operation is an example of how the address adder updates a memory pointer. In this case, the stack address is moved from the Stack Pointer to the IND register in order to perform the memory read. As part of the read operation, the IND register is incremented by 2. The address is then moved from the IND register to the Stack Pointer. Thus, the address adder not only performs the segment arithmetic, but also computes the new value for the SP register.

    Note that the increment/decrement of the IND register happens after the memory operation. For stack operations, the SP must be decremented before a PUSH and incremented after a POP. The adder cannot perform a predecrement, so the PUSH instruction uses the ALU (Arithmetic/Logic Unit) to perform the decrement. 

  6. During the CORR micro-instruction, the Bus Interface Unit performs special TS and T0 states. Note that these states don't have any external effect, so they are invisible outside the processor. 

  7. The tradeoff with memory boards was that slower RAM chips were cheaper. The better RAM boards advertised "no wait states", but cheaper boards would add one or more wait states to every access, reducing performance. 

  8. Only the second half of the TS state has an effect on the Bus Interface Unit, so TS is not a full state like the other states. Specifically, a delayed TS signal is taken from the first half of the T0 flip-flop, and this signal is used to control various actions in the Bus Interface Unit. (Alternatively, you could think of this as an early T0 state.) This is why there isn't a separate flip-flop for the TS state. I suspect this is due to timing issues; by the time the TS state is generated by the logic, there isn't enough time to do anything with the state in that half clock cycle, due to propagation delays. 

  9. There is a bit more circuitry for the T1 state for a HALT. Specifically, there is a flip-flop that is set on this signal. On the next cycle, this flip-flop both blocks the generation of another T1 state and blocks the previous T1 state from progressing to T2. In other words, this flip-flop makes sure the special T1 lasts for one cycle. However, a HOLD state resets this flip-flop. That allows another special T1 to be generated when the HOLD ends. 

  10. The trickiest part of this circuit is using T1-pre to start a (short) cycle for HALT. The way it works is that the T1-pre signal only makes a difference if there isn't a bus cycle already active. The only way to get an "unexpected" T1-pre signal is if the state machine generates it for the first cycle of a HALT. Thus, the HALT triggers T1-pre and thus the bus-active signal. You might wonder why the bus-active uses this roundabout technique rather than getting triggered directly by HALT. The motivation is that the special T1 state for HALT requires the AND of three signals to ensure that the state is generated once for the HALT rather than continuously, but happens again after a HOLD, and waits until the current bus cycle is done. Instead of duplicating that AND gate, the circuit uses T1-pre which incorporates that logic. (This took me a long time to figure out.) 

  11. The 8088 has a 16-bit bus, compared to the 8088's 8-bit bus. Thus, a 16-bit bus operation on the 8088 will always require two 8-bit operations, while the 8086 can usually perform this operation in a single step. However, a 16-bit bus operation on the 8086 will still need to be broken into two 8-bit operations if the address is unaligned (i.e. odd). 

Reverse engineering the barrel shifter circuit on the Intel 386 processor die

The Intel 386 processor (1985) was a large step from the 286 processor, moving x86 to a 32-bit architecture. The 386 also dramatically improved the performance of shift and rotate operations by adding a "barrel shifter", a circuit that can shift by multiple bits in one step. The die photo below shows the 386's barrel shifter, highlighted in the lower left and taking up a substantial part of the die.

The 386 die with the main functional blocks labeled. Click this image (or any other) for a larger version.)

The 386 die with the main functional blocks labeled. Click this image (or any other) for a larger version.)

Shifting is a useful operation for computers, moving a binary value left or right by one or more bits. Shift instructions can be used for multiplying or dividing by powers of two, and as part of more general multiplication or division. Shifting is also useful for extracting bit fields, aligning bitmap graphics, and many other tasks.1

Barrel shifters require a significant amount of circuitry. A common approach is to use a crossbar, a matrix of switches that can connect any input to any output. By closing switches along a desired diagonal, the input bits are shifted. The diagram below illustrates a 4-bit crossbar barrel shifter with inputs X (vertical) and outputs Y (horizontal). At each point in the grid, a switch (triangle) connects a vertical input line to a horizontal output line. Energizing the blue control line, for instance, passes the value through unchanged (X0 to Y0 and so forth). Energizing the green control line rotates the value by one bit position (X0 to Y1 and so forth, with X3 wrapping around to X0). Similarly, the circuit can shift by 2 or 3 bits. The shift control lines select the amount of shift. These lines run diagonally, which will be important later.

A four-bit crossbar switch with inputs X and outputs Y. Image by Cmglee, CC BY-SA 3.0.

A four-bit crossbar switch with inputs X and outputs Y. Image by Cmglee, CC BY-SA 3.0.

The main problem with a crossbar barrel shifter is that it takes a lot of hardware. The 386's barrel shifter has a 64-bit input and a 32-bit output,2 so the approach above would require 2048 switches (64×32). For this reason, the 386 uses a hybrid approach, as shown below. It has a 32×8 crossbar that can shift by 0 to 28 bits, but only in multiples of 4, making the circuit much smaller. The output from the crossbar goes to a second circuit that can shift by 0, 1, 2, or 3 bits. The combined circuitry supports an arbitrary shift, but requires less hardware than a complete crossbar. The inputs to the barrel shifter are two 32-bit values from the processor's register file, stored in latches for use by the shifter.

Block diagram of the barrel shifter circuit.

Block diagram of the barrel shifter circuit.

The figure below shows how the shifter circuitry appears on the die; this image shows the two metal layers on the die's surface. The inputs from the register file are at the bottom, for bits 31 through 0. Above that, the input latches hold the two 32-bit inputs for the shifter. In the middle is the heart of the shift circuit, the crossbar matrix. This takes the two 32-bit inputs and produces a 32-bit output. The matrix is controlled by sloping polysilicon lines, driven by control circuitry on the right. The matrix output goes to the circuit that applies a shift of 0 to 3 positions. Finally, the outputs exit at the top, where they go to other parts of the CPU. The shifter performs right shifts, but as will be explained below, the same circuit is used for the left shift instructions.

The barrel shifter circuitry as it appears on the die. I have cut out repetitive circuitry from the middle because the complete image is too wide to display clearly.

The barrel shifter circuitry as it appears on the die. I have cut out repetitive circuitry from the middle because the complete image is too wide to display clearly.

The barrel shifter crossbar matrix

In this section, I'll describe the matrix part of the barrel shifter circuit. The shift matrix takes 32-bit values a and b. Value b is shifted to the right, with bits from a filling in at the left, producing a 32-bit output. (As will be explained below, the output is actually 37 bits due to some complications, but ignore that for now.) The shift count is a multiple of 4 from 0 to 28.

The diagram below illustrates the structure of the shift matrix. The two 32-bit inputs are provided at the bottom, interleaved, and run vertically. The 32 output lines run horizontally. The 8 control lines run diagonally, activating the switches (black dots) to connect inputs and outputs. (For simplicity, only 3 control lines are shown.) For a shift of 0, control line 0 (red) is selected and the output is b31b30...b1b0. (You can verify this by matching up inputs to outputs through the dots along the red line.)

Diagram of the shift matrix, showing three of the shift control lines.

Diagram of the shift matrix, showing three of the shift control lines.

For a shift right of 4, the cyan control line is activated. It can be seen that the output in this case is a3a2a1a0b31b30...b5b4, shifting b to the right 4 bits and filling in four bits from a as desired. For a shift of 28, the purple control line is activated, producing the output a27...a0b31...b28. Note that the control lines are spaced four bits apart, which is why the matrix only shifts by a multiple of 4. Another important feature is that below the red diagonal, the b inputs are connected to the output, while above the diagonal, the a inputs are connected to the output. (In other words, the black dots are shifted to the right above the diagonal.) This implements the 64-bit support, taking bits from a or b as appropriate.

Looking at the implementation on the die, the vertical wires use the lower metal layer (metal 1) while the horizontal wires use the upper metal layer (metal 2), so the wires don't intersect. NMOS transistors are used as the switches to connect inputs and outputs.4 The transistors are controlled by diagonal wires constructed of polysilicon that form the transistor gates. When a particular polysilicon wire is energized, it turns on the transistors along a diagonal line, connecting those inputs and outputs.

The image below shows the left side of the matrix.5 The polysilicon control lines are the green horizontal lines stepping down to the right. These control the transistors, which appear as columns of blue-gray squares next to the polysilicon lines. The metal layers have been removed; the position of the lower metal 1 layer is visible in the vertical bluish lines.

The left side of the matrix as it appears on the die.

The left side of the matrix as it appears on the die.

The diagram below shows four of these transistors in the shifter matrix. There are four circuitry layers involved. The underlying silicon is pinkish gray; the active regions are the squares with darker borders. Next is the polysilicon (green), which forms the control lines and the transistor gates. The lower metal layer (metal 1) forms the blue vertical lines that connect to the transistors.3 The upper metal layer (metal 2) forms the horizontal bit output lines. Finally, the small black dots are the vias that connect metal 1 and metal 2. (The well taps are silicon regions connected to ground to prevent latch-up.)

Four transistors in the shifter matrix. The polysilicon and metal lines have been drawn in.

Four transistors in the shifter matrix. The polysilicon and metal lines have been drawn in.

To see how this works, suppose the upper polysilicon line is activated, turning on the top two transistors. The two vertical bit-in lines (blue) will be connected through the transistors to the top two bit out lines (purple), by way of the short light blue metal segments and the via (black dot). However, if the lower polysilicon line is activated, the bottom two transistors will be turned on. This will connect the bit-in lines to the fifth and sixth bit-out lines, four lines down from the previous ones. Thus, successive polysilicon lines shift the connections down by four lines at a time, so the shifts change in steps of 4 bit positions.

As mentioned earlier, to support the 64-bit input, the transistors below the diagonal are connected to b input while the transistors above the diagonal are connected to the a input. The photo below shows the physical implementation: the four upper transistors are shifted to the right by one wire width, so they connect to vertical a wires, while the four lower transistors are connected to b wires. (The metal wires were removed for this photo to show the transistors.)

This photo of the underlying silicon shows eight transistors. The top four transistors are shifted one position to the right. the irregular lines are remnants of other layers that I couldn't completely remove from the die.

This photo of the underlying silicon shows eight transistors. The top four transistors are shifted one position to the right. the irregular lines are remnants of other layers that I couldn't completely remove from the die.

In the matrix, the output signals run horizontally. In order for signals to exit the shifter from the top of the matrix, each horizontal output wire is connected to a vertical output wire. Meanwhile, other processor signals (such as the register write data) must also pass vertically through the shifter region. The result is a complicated layout, packing everything together as tightly as possible.

The precharge/keepers

At the left and the right of the barrel shifter, repeated blocks of circuitry are visible. These blocks contain precharge and keeper circuits to hold the value on one of the lines. During the first clock phase, each horizontal bit line is precharged to +5 volts. Next, the matrix is activated and horizontal lines may be pulled low. If the line is not pulled low, the inverter and PMOS transistor will continuously pull the line high. The inverter and transistor can be viewed as a bus keeper, essentially a weak latch to hold the line in the 1 state. The keeper uses relatively weak transistors, so the line can be pulled low when the barrel shifter is activated. The purpose of the keeper is to ensure that the line doesn't drift into a state between 0 and 1. This is a bad situation with CMOS circuitry, since the pull-up and pull-down transistors could both turn on, yielding a short circuit.

The precharge/keeper circuit

The precharge/keeper circuit

The motivation behind this design is that implementing the matrix with "real" CMOS would require twice as many transistors. By implementing the matrix with NMOS transistors only, the size is reduced. In a standard NMOS implementation, pull-up transistors would continuously pull the lines high, but this results in fairly high power consumption. Instead, the precharge circuit pulls the line high at the start. But this results in dynamic logic, dependent on the capacitance of the circuit to hold the charge. To avoid the charge leaking away, the keeper circuit keeps the line high until it is pulled low. Thus, this circuit minimizes the area of the matrix as well as minimizing power consumption.

There are 37 keepers in total for the 37 output lines from the matrix.6 (The extra 5 lines will be explained below.) The photo below shows one block of three keepers; the metal has been removed to show the silicon transistors and some of the polysilicon (green).

One block of keeper circuitry, to the right of the shift matrix. This block has 12 transistors, supporting three bits.

One block of keeper circuitry, to the right of the shift matrix. This block has 12 transistors, supporting three bits.

The register latches

At the bottom of the shift circuit, two latches hold the two 32-bit input values. The 386 has multi-ported registers, so it can access two registers and write a third register at the same time. This allows the shift circuit to load both values at the same time. I believe that a value can also come from the 386's constant ROM, which is useful for providing 0, 1, or all-ones to the shifter.

The schematic below shows the register latches for one bit of the shifter. Starting at the bottom are the two inputs from the register file (one appears to be inverted for no good reason). Each input is stored in a latch, using the standard 386 latch circuit.7 The latched input is gated by the clock and then goes through multiplexers allowing either value to be used as either input to the shifter. (The shifter takes two 32-bit inputs and this multiplexer allows the inputs to be swapped to the other sides of the shifter.) A second latch stage holds the values for the output; this latch is cleared during the first clock phase and holds the desired value during the second clock phase.

Circuit for one bit of the register latch.

Circuit for one bit of the register latch.

The die photo below shows the register latch circuit, contrasting the metal layers (left) with the silicon layer (right). The dark spots in the metal image are vias between the metal layers or connections to the underlying silicon or polysilicon. The metal layer is very dense with vertical wiring in the lower metal 1 layer and horizontal wiring in the upper metal 2 layer. The density of the chip seems to be constrained by the metal wiring more than the density of the transistors.

One of the register latch circuits.

One of the register latch circuits.

The 0-3 shifter

The shift matrix can only shift in steps of 4 bits. To support other shifts, a circuit at the top of the shifter provides a shift of 0 to 3 bits. In conjunction, these circuits permit a shift by an arbitrary amount.8 The schematic below shows the circuit. A bit enters at the bottom. The first shift stage passes the bit through, or sends it one bit position to the right. The second stage passes the bit through, or sends it two bit positions to the right. Thus, depending on the control lines, each bit can be shifted by 0 to 3 positions to the right. At the top, a transistor pulls the circuit low to initialize it; the NOR gate at the bottom does the same. A keeper transistor holds the circuit low until a data bit pulls it high.

One bit of the 0-3 shifter circuit.

One bit of the 0-3 shifter circuit.

The diagram below shows the silicon implementation corresponding to two copies of the schematic above. The shifters are implemented in pairs to slightly optimize the layout. In particular, the two NOR gates are mirrored so the power connection can be shared. This is a small optimization, but it illustrates that the 386 designers put a lot of work into making the layout dense.

Two bits of the 0-3 shifter circuit as it appears on the die.

Two bits of the 0-3 shifter circuit as it appears on the die.

Complications

As is usually the case with x86, there are a few complications. One complication is that the shift matrix has 37 outputs, rather than the expected 32. There are two reasons behind this. First, the upper shifter will shift right by up to 3 positions, so it needs 3 extra bits. Thus, the matrix needs to output bits 0 through 34 so three bits can be discarded. Second, shift instructions usually produce a carry bit from the last bit shifted out of the word. To support this, the shift matrix provides an extra bit at both ends for use as the carry. The result is that the matrix produces 37 outputs, which can be viewed as bits -1 through 35.

Another complication is that the x86 instruction set supports shifts on bytes and 16-bit words as well as 32-bit words. If you put two 8-bit bytes into the shifter, there will be 24 unused bits in between, posing a problem for the shifter. The solution is that some of the diagonal control lines in the matrix are split on byte and word boundaries, allowing an 8- or 16-bit value to be shifted independently. For example, you can perform a 4-bit right shift on the right-hand byte, and a 28-bit right shift on the left-hand byte. This brings the two bytes together in the result, yielding the desired 4-bit right shift. As a result, there are 18 diagonal control lines in the shifter (if I counted correctly), rather than the expected 8 control lines. This makes the circuitry to drive the control lines more complicated, as it must generate different signals depending on the size of the operand.

The control circuitry

The control circuitry at the right of the shifter drives the diagonal polysilicon lines in the matrix, selecting the desired shift. It also generates control signals for the 0-3 shifter, selecting a shift-by-1 or shift-by-2 as necessary. This circuitry operates under the control of the microcode, which tells it when to shift. It gets the shift amount from the instruction or the CL register and generates the appropriate control signals.

The distribution of control signals is more complex than you might expect. If possible, the polysilicon diagonals are connected on the right of the matrix to the control circuitry, providing a direct connection. However, many of the diagonals do not extend all the way to the right, either because they start on the left or because they are segmented for 8- or 16-bit values. Some of these signals are transmitted through polysilicon lines that run underneath the matrix. Others are transmitted through horizontal metal lines that run through the register latches. (These latches don't use many horizontal lines, so there is available space to route other signals.) These signals then ascend through the matrix at various points to connect with the polysilicon lines. This shows that the routing of this circuitry is carefully optimized to make it as compact as possible. Moreover, these "extra" lines disrupt the layout; the matrix is almost a regular pattern, but it has small irregularities throughout.

Implementing x86 shifts and rotates with the barrel shifter

The x86 has a variety of shift and rotate instructions.9 It is interesting to consider how they are implemented using the barrel shifter, since it is not always obvious. In this section, I'll discuss the instructions supported by the 386.

One important principle is that even though the circuitry shifts to the right, by changing the inputs this can achieve a shift to the left. To make this concrete, consider two input words a and b, with the shifter extracting the portion in red below. (I'll use 8-bit examples instead of 32-bit here and below to keep the size manageable.) The circuit shifts b to the right five bits, inserting bits from a at the left. Alternatively, the result can be viewed as shifting a to the left three bits, inserting bits from b at the right. Thus, the same result can be viewed as a right shift of b or a left shift of a. This holds in general, with a 32-bit right shift by N bits equivalent to a left shift by 32-N bits, depending on which word10 you focus on.

a7a6a5a4a3a2a1a0b7b6b5b4b3b2b1b0

Double shifts

The double-shift instructions (Shift Left Double (SHLD) and Shift Right Double (SHRD)) were new in the 386, shifting two 32-bit values to produce a 32-bit result. The last bit shifted out goes into the carry flag (CF). These instructions map directly onto the behavior of the barrel shifter, so I'll start with them.

Actions of the double shift instructions.

Actions of the double shift instructions.

The examples below show how the shifter implements the SHLD and SHRD instructions; the shifter output is highlighted in red. (These examples use an 8-bit source (s) and destination (d) to keep them manageable.) In either case, 3 bits of the source are shifted into the destination; shifting left or right is just a matter of whether the destination is on the left or right.

SHLD 3: ddddddddssssssss

SHRD 3: ssssssssdddddddd

Shifts

The basic shift instructions are probably the simplest. Shift Arithmetic Left (SAL) and Shift Logical Left (SHL) are synonyms, shifting the destination to the left and filling with zeroes. This can be accomplished by performing a shift with the word on the left and zeroes on the right. Shift Logical Right (SHR) is the opposite, shifting to the right and filling with zeros. This can be accomplished by putting the word on the right and zeroes on the left. Shift Arithmetic Right (SAR) is a bit different. It fills with the sign bit, the top bit. The purpose of this is to shift a signed number while preserving its sign. It can be implemented by putting all zeroes or all ones on the left, depending on the sign bit. Thus, the shift instructions map nicely onto the barrel shifter.

Actions of the shift instructions.

Actions of the shift instructions.

The 8-bit examples below show how the shifter accomplishes the SHL, SHR, and SAR instructions. The destination value d is loaded into one half of the shifter. For SAR, the value's sign bit s is loaded into the other half of the shifter, while the other instructions load 0 into the other half of the shifter. The red box shows the output from the shifter, selected from the input.

SHL 3: dddddddd00000000

SHR 3: 00000000dddddddd

SAR 3: ssssssssdddddddd

Rotates

Unlike the shift instructions, the rotate instructions preserve all the bits. As bits shift off one end, they fill in the other end, so the bit sequence rotates. A rotate left or right is implemented by putting the same word on the left and right.

Actions of the rotate instructions.

Actions of the rotate instructions.

The shifter implements rotates as shown below, using the destination value as both shifter inputs. A left shift by N bits is implemented by shifting right by 32-N bits.

ROL 3: d7d6d5d4d3d2d1d0d7d6d5d4d3d2d1d0

ROR 3: d7d6d5d4d3d2d1d0d7d6d5d4d3d2d1d0

Rotates through carry

The rotate through carry instructions perform 33-bit rotates, rotating the value through the carry bit. You might wonder how the barrel shifter can perform a 33-bit rotate, and the answer is that it can't. Instead, the instruction takes multiple steps. If you look at the instruction timings, the other shifts and rotates take three clock cycles. Rotating through the carry, however, takes nine clock cycles, performing multiple steps under the control of the microcode.

Actions of the rotate through carry instructions.

Actions of the rotate through carry instructions.

Without looking at the microcode, I can only speculate how it takes place. One sequence would be to get the top bits by putting zeroes in the right 32 bits and shifting. Next, get the bottom bits by putting the carry bit in the left 32 bits and shifting one bit more. (That is, set the left 32-bit input to either the constant 0 or 1, depending on the carry.) Finally, the result can be generated by ORing the two shift values together. The example below shows how an RCL 3 could be implemented. In the second step, the carry value C is loaded into the left side of the shifter, so it can get into the result. Note that bit d5 ends up in the carry bit, rather than the result. The RCR instruction would be similar, but adjusting the shift parameters accordingly.

First shift: d7d6d5d4d3d2d1d000000000

Second shift: 0000000Cd7d6d5d4d3d2d1d0

Result from OR: d4d3d2d1d0Cd7d6

Conclusions

The shifter circuit illustrates how the rapidly increasing transistor counts in the 1980s allowed new features. Programming languages make it easy to shift numbers with an expression such as a>>5. But it takes a lot of hardware in the processor to perform these shifts efficiently. The additional hardware of the 386's barrel shifter dramaticallly improved shift performance for shifts and rotates compared to earlier x86 processors. I estimate that the barrel shifter requires about 2000 transistors, about half the number of the entire 6502 processor (1975). But by 1985, putting 2000 transistors into a feature was practical. (In total, the 386 contains 285,000 transistors, a trivial number now, but a large number for the time.)

I plan to write more about the 386, so follow me on Twitter @kenshirriff or RSS for updates. I'm also on Mastodon occasionally as @[email protected].

Notes and references

  1. The earliest reference for a barrel shifter is often given as "A barrel switch design", Computer Design, 1972, but the idea of a barrel shifter goes back to 1964 at least. (The "barrel switch" name presumably comes from a physical barrel switch, a cylindrical multi-position switch such as a car ignition.) The CDC 6600 supercomputer (1964) had a 6-stage shifter able to shift up to 63 positions in one cycle (details); it was called a "parallel shifting network" rather than a "barrel shifter". A Burroughs patent filed in 1965 describes a barrel switch "capable of performing logical switching operations in a single time involving any amount of binary information," so the technology is older.

    Early microprocessors shifted by one bit position at a time. Although the Intel 8086 provided instructions to shift by multiple bits at a time, this was implemented internally by a microcode loop, so the more bits you shifted, the longer the instruction took, four clock cycles per bit. Shifting on the 286 was faster, taking one additional cycle for each bit position shifted. The first ARM processor (ARM1, 1985) included a 32-bit barrel shifter. It was considerably simpler than the 386's design, following ARM's RISC philosophy. 

  2. The 386 Hardware Reference Manual states that the 386 contains a 64-bit barrel shifter. I find this description a bit inaccurate, since the output is only 32 bits, so the barrel shifter is much simpler than a full 64-bit barrel shifter. 

  3. The 386 has two layers of metal. The vertical lines are in the lower layer of metal (metal 1) while the horizontal lines are in the upper layer of metal (metal 2). Transistors can only connect to lower metal, so the connection between the horizontal line and the transistor uses a short piece of lower metal to bridge the layers. 

  4. Each row of the matrix can be considered a multiplexer with 8 inputs, implemented by 8 pass transistors. One of the eight transistors is activated, passing that input to the output. 

  5. The image below shows the full shift matrix. Click the image for a much larger view.

    The matrix with the metal layer removed.

    The matrix with the metal layer removed.

     

  6. The keepers are arranged with 6 blocks of three on the left and 6 blocks of 3 on the right, plus an additional one at the bottom right. 

  7. The standard latch in the 386 consists of two cross-coupled inverters forming a static circuit to hold a bit. The input goes through a transmission gate (back-to-back NMOS and PMOS transistors) to the inverters. One inverter is weak, so it can be overpowered by the input. The 8086, in contrast, uses dynamic latches that depend on the gate capacitance to hold a bit. 

  8. Some shifters take the idea of combining shift circuits to the extreme. If you combine a shift-by-one circuit, a shift-by-two circuit, a shift-by-four circuit, and so forth, you end up with a logarithmic shifter: selecting the appropriate stages provide an arbitrary shift. (This design was used in the CDC 6600.) This design has the advantage of reducing the amount of circuitry since it uses log2(N) layers rather than N layers. However, the logarithmic approach has performance disadvantages since the signals need to go through more circuitry. This paper describes various design alternatives for barrel shifters. 

  9. The basic rotate left and right instructions date back to the Datapoint 2200, the ancestor of the 8086 and x86. The rotate left through carry and rotate right through carry instructions in x86 were added in the Intel 8008 processor and the 8080 was the same. The MOS 6502 had a different set of rotates and shifts: arithmetic shift left, rotate left, logical shift right, and rotate right; the rotate instructions rotated through the carry. The Z-80 had a more extensive set: rotates left and right, either through the carry or not, shift left, shift right logical, shift right arithmetic, and 4-bit digit rotates left and right through two bytes. The 8086's set of rotates and shifts was similar to the Z-80, except it didn't have the digit rotates. The 8086 also supported shifting and rotating by multiple positions. This illustrates that there isn't a "natural" set of shift and rotate instructions. Instead, different processors supported different instructions, with complexity generally increasing over time. 

  10. The x86 uses "word" to refer to a 16-bit value and "double word" or "dword" to refer to a 32-bit value. I'm going to ignore the word/dword distinction. 

Tracing the roots of the 8086 instruction set to the Datapoint 2200 minicomputer

The Intel 8086 processor started the x86 architecture that is still extensively used today. The 8086 has some quirky characteristics: it is little-endian, has a parity flag, and uses explicit I/O instructions instead of just memory-mapped I/O. It has four 16-bit registers that can be split into 8-bit registers, but only one that can be used for memory indexing. Surprisingly, the reason for these characteristics and more is compatibility with a computer dating back before the creation of the microprocessor: the Datapoint 2200, a minicomputer with a processor built out of TTL chips. In this blog post, I'll look in detail at how the Datapoint 2200 led to the architecture of Intel's modern processors, step by step through the 8008, 8080, and 8086 processors.

The Datapoint 2200

In the late 1960s, 80-column IBM punch cards were the primary way of entering data into computers, although CRT terminals were growing in popularity. The Datapoint 2200 was designed as a low-cost terminal that could replace a keypunch, with a squat CRT display the size of a punch card. By putting some processing power into the Datapoint 2200, it could perform data validation and other tasks, making data entry more efficient. Even though the Datapoint 2200 was typically used as an intelligent terminal, it was really a desktop minicomputer with a "unique combination of powerful computer, display, and dual cassette drives." Although now mostly forgotten, the Datapoint 2200 was the origin of the 8-bit microprocessor, as I'll explain below.

The Datapoint 2200 computer (Version II).

The Datapoint 2200 computer (Version II).

The memory storage of the Datapoint 2200 had a large impact on its architecture and thus the architecture of today's computers. In the 1960s and early 1970s, magnetic core memory was the dominant form of computer storage. It consisted of tiny ferrite rings, threaded into grids, with each ring storing one bit. Magnetic core storage was bulky and relatively expensive, though. Semiconductor RAM was new and very expensive; Intel's first product in 1969 was a RAM chip called the 3101, which held just 64 bits and cost $99.50. To minimize storage costs, the Datapoint 2200 used an alternative: MOS shift-register memory. The Intel 1405 shift-register memory chip provided much more storage than RAM chips at a much lower cost (512 bits for $13.30).1

Intel 1405 shift-register memory chips in metal cans, in the Datapoint 2200.

Intel 1405 shift-register memory chips in metal cans, in the Datapoint 2200.

The big problem with shift-register memory is that it is sequential: the bits come out one at a time, in the same order you put them in. This wasn't a problem when executing instructions sequentially, since the memory provided each instruction as it was needed. For a random access, though, you need to wait until the bits circulate around and you get the one you want, which is very slow. To minimize the number of memory accesses, the Datapoint 2200 had seven registers, a relatively large number of registers for the time.2 The registers were called A, B, C, D, E, H, and L, and these names had a lasting impact on Intel processors.

Another consequence of shift-register memory was that the Datapoint 2200 was a serial computer, operating on one bit at a time as the shift-register memory provided it, using a 1-bit ALU. To handle arithmetic operations, the ALU needed to start with the lowest bit so it could process carries. Likewise, a 16-bit value (such as a jump target) needed to start with the lowest bit. This resulted in a little-endian architecture, with the low byte first. The little-endian architecture has remained in Intel processors to the present.

Since the Datapoint 2200 was designed before the creation of the microprocessor, its processor was built from a board of TTL chips (as was typical for minicomputers at the time). The diagram below shows the processor board with the chips categorized by function. The board has a separate chip for each 8-bit register (B, C, D, etc.) and separate chips for control flags (Z, carry, etc.). The Arithmetic/Logic Unit (ALU) takes about 18 chips, while instruction decoding is another 18 chips. Because every feature required more chips, the designers of the Datapoint 2200 were strongly motivated to make the instruction set as simple as possible. This was necessary since the Datapoint 2200 was a low-cost device, renting for just $148 a month. In contrast, the popular PDP-8 minicomputer rented for $500 a month.

The Datapoint 2200 processor board with registers, flags, and other blocks labeled. Click this image (or any other) for a larger version.

The Datapoint 2200 processor board with registers, flags, and other blocks labeled. Click this image (or any other) for a larger version.

One way that the Datapoint 2200 simplified the hardware was by creating a large set of instructions by combining simpler pieces in an orthogonal way. For instance, the Datapoint 2200 has 64 ALU instructions that apply one of eight ALU operations to one of the eight registers. This requires a small amount of hardware—eight ALU circuits and a circuit to select the register—but provides a large number of instructions. Another example is the register-to-register move instructions. Specifying one of eight source registers and one of eight destination registers provides a large, flexible set of instructions to move data.

The Datapoint 2200's instruction format was designed around this principle, with groups of three bits specifying a register. A common TTL chip could decode the group of three bits and activate the desired circuit.3 For instance, a data move instruction had the bit pattern 11DDDSSS to move a byte from the specified source (SSS) to the specified destination (DDD). (Note that this bit pattern maps onto three octal digits very nicely since the source and destination are separate digits.4)

One unusual feature of the Datapoint instruction set is that a memory access was just like a register access. That is, an instruction could specify one of the seven physical registers or could specify a memory access (M), using the identical instruction format. One consequence of this is that you couldn't include a memory address in an instruction. Instead, memory could only be accessed by first loading the address into the H and L registers, which held the high and low byte of the address respectively.5 This is very unusual and inconvenient, since a memory access took three instructions: two to load the H and L registers and one to access memory as the M "register". The advantage was that it simplified the instruction set and the decoding logic, saving chips and thus reducing the system cost. This decision also had lasting impact on Intel processors and how they access memory.

The table below shows the Datapoint 2200's instruction set in an octal table showing the 256 potential opcodes.6 I have roughly classified the instructions as arithmetic/logic (purple), control-flow (blue), data movement (green), input/output (orange), and miscellaneous (yellow). Note how the orthogonal instruction format produces large blocks of related instructions. The instructions in the lower right (green) load (L) a value from a source to a destination. (The no-operation NOP and HALT instructions are special cases.7) In the upper-left are Load operations (LA, etc.) that use an "immediate" byte, a data byte that follows the instruction. They use the same DDD code to specify the destination register, reusing that circuitry.

 0123456701234567
0HALTHALTSLCRFCAD LARETURNJFCINPUTCFC JMP CALL 
1  SRCRFZAC LB JFZ CFZ     
2   RFSSU LC JFSEX ADRCFSEX STATUS EX DATA EX WRITE
3   RFPSB LD JFPEX COM1CFPEX COM2 EX COM3 EX COM4
4   RTCND LE JTC CTC     
5   RTZXR LH JTZEX BEEPCTZEX CLICK EX DECK1 EX DECK2
6   RTSOR LL JTSEX RBKCTSEX WBK   EX BSP
7   RTPCP   JTPEX SFCTPEX SB EX REWND EX TSTOP
0ADAADBADCADDADEADHADLADMNOPLABLACLADLAELAHLALLAM
1ACAACBACCACDACEACHACLACMLBALBBLBCLBDLBELBHLBLLBM
2SUASUBSUCSUDSUESUHSULSUMLCALCBLCCLCDLCELCHLCLLCM
3SBASBBSBCSBDSBESBHSBLSBMLDALDBLDCLDDLDELDHLDLLDM
4NDANDBNDCNDDNDENDHNDLNDMLEALEBLECLEDLEELEHLELLEM
5XRAXRBXRCXRDXREXRHXRLXRMLHALHBLHCLHDLHELHHLHLLHM
6ORAORBORCORDOREORHORLORMLLALLBLLCLLDLLELLHLLLLLM
7CPACPBCPCCPDCPECPHCPLCPMLMALMBLMCLMDLMELMHLMLHALT

The lower-left quadrant (purple) has the bulk of the ALU instructions. These instructions have a regular, orthogonal structure making the instructions easy to decode: each row specifies the operation while each column specifies the source. This is due to the instruction structure: eight bits in the pattern 10AAASSS, where the AAA bits specified the ALU operation and the SSS bits specified the register source. The three-bit ALU code specifies the operations Add, Add with Carry, Subtract, Subtract with Borrow, logical AND, logical XOR, logical OR, and Compare. This list is important because it defined the fundamental ALU operations for later Intel processors.8 In the upper-left are ALU operations that use an "immediate" byte. These instructions use the same AAA bit pattern to select the ALU operation, reusing the decoding hardware. Finally, the shift instructions SLC and SRC are implemented as special cases outside the pattern.

The upper columns contain conditional instructions in blue—Return, Jump, and Call. The eight conditions test the four status flags (Carry, Zero, Sign, and Parity) for either True or False. (For example, JFZ Jumps if the Zero flag is False.) A 3-bit field selects the condition, allowing it to be easily decoded in hardware. The parity flag is somewhat unusual because parity is surprisingly expensive to compute in hardware, but because the Datapoint 2200 operated as a terminal, parity computation was important.

The Datapoint 2200 has an input instruction as well as many output instructions for a variety of specific hardware tasks (orange, labeled EX for external). Typical operations are STATUS to get I/O status, BEEP and CLICK to make sound, and REWIND to rewind the tape. As a result of this decision to use separate I/O instructions, Intel processors still use I/O instructions operating in an I/O space, different from processors such as the MOS 6502 and the Motorola 68000 that used memory-mapped I/O.

To summarize, the Datapoint 2200 has a fairly large number of instructions, but they are generated from about a dozen simple patterns that are easy to decode.9 By combining orthogonal bit fields (e.g. 8 ALU operations multiplied by 8 source registers), 64 instructions can be generated from one underlying pattern.

Intel 8008

The Intel 8008 was created as a clone of the Datapoint 2200 processor.10 Around the end of 1969, the Datapoint company talked with Intel and Texas Instruments about the possibility of replacing the processor board with a single chip. Even though the microprocessor didn't exist at this point, both companies said they could create such a chip. Texas Instruments was first with a chip called the TMX 1795 that they advertised as a "CPU on a chip". Slightly later, Intel produced the 8008 microprocessor. Both chips copied the Datapoint 2200's instruction set architecture with minor changes.

The Intel 8008 chip in its 18-pin package. The small number of pins hampered the performance of the 8008, but Intel was hesitant to even go to the 18-pin package. Photo by Thomas Nguyen, (CC BY-SA 4.0).

The Intel 8008 chip in its 18-pin package. The small number of pins hampered the performance of the 8008, but Intel was hesitant to even go to the 18-pin package. Photo by Thomas Nguyen, (CC BY-SA 4.0).

By the time the chips were completed, however, the Datapoint corporation had lost interest in the chips. They were designing a much faster version of the Datapoint 2200 with improved TTL chips (including the well-known 74181 ALU chip). Even the original Datapoint 2200 model was faster than the Intel 8008 processor, and the Version II was over 5 times faster,11 so moving to a single-chip processor would be a step backward.

Texas Instruments unsuccessfully tried to find a customer for their TMX 1795 chip and ended up abandoning the chip. Intel, however, marketed the 8008 as an 8-bit microprocessor, essentially creating the microprocessor industry. In my view, Intel's biggest innovation with the microprocessor wasn't creating a single-chip CPU, but creating the microprocessor as a product category: a general-purpose processor along with everything customers needed to take advantage of it. Intel put an enormous amount of effort into making microprocessors a success: from documentation and customer training to Intellec development systems, from support chips to software tools such as assemblers, compilers, and operating systems.

The table below shows the opcodes of the 8008. For the most part, the 8008 copies the Datapoint 2200, with identical instructions that have identical opcodes (in color). There are a few additional instructions (shown in white), though. Intel Designer Ted Hoff realized that increment and decrement instructions (IN and DC) would be very useful for loops. There are two additional bit rotate instructions (RAL and RAR) as well as the "missing" LMI (Load Immediate to Memory) instruction. The RST (restart) instructions act as short call instructions to fixed addresses for interrupt handling. Finally, the 8008 turned the Datapoint 2200's device-specific I/O instructions into 32 generic I/O instructions.

 0123456701234567
0HLTHLTRLCRFCADIRST 0LAIRETJFCINP 0CFCINP 1JMPINP 2CALINP 3
1INBDCBRRCRFZACIRST 1LBI JFZINP 4CFZINP 5 INP 6 INP 7
2INCDCCRALRFSSUIRST 2LCI JFSOUT 8CFSOUT 9 OUT 10 OUT 11
3INDDCDRARRFPSBIRST 3LDI JFPOUT 12CFPOUT 13 OUT 14 OUT 15
4INEDCE RTCNDIRST 4LEI JTCOUT 16CTCOUT 17 OUT 18 OUT 19
5INHDCH RTZXRIRST 5LHI JTZOUT 20CTZOUT 21 OUT 22 OUT 23
6INLDCL RTSORIRST 6LLI JTSOUT 24CTSOUT 25 OUT 26 OUT 27
7   RTPCPIRST 7LMI JTPOUT 28CTPOUT 29 OUT 30 OUT 31
0ADAADBADCADDADEADHADLADMNOPLABLACLADLAELAHLALLAM
1ACAACBACCACDACEACHACLACMLBALBBLBCLBDLBELBHLBLLBM
2SUASUBSUCSUDSUESUHSULSUMLCALCBLCCLCDLCELCHLCLLCM
3SBASBBSBCSBDSBESBHSBLSBMLDALDBLDCLDDLDELDHLDLLDM
4NDANDBNDCNDDNDENDHNDLNDMLEALEBLECLEDLEELEHLELLEM
5XRAXRBXRCXRDXREXRHXRLXRMLHALHBLHCLHDLHELHHLHLLHM
6ORAORBORCORDOREORHORLORMLLALLBLLCLLDLLELLHLLLLLM
7CPACPBCPCCPDCPECPHCPLCPMLMALMBLMCLMDLMELMHLMLHLT

Intel 8080

The 8080 improved the 8008 in many ways, focusing on speed and ease of use, and resolving customer issues with the 8008.12 Customers had criticized the 8008 for its small memory capacity, low speed, and difficult hardware interfacing. The 8080 increased memory capacity from 16K to 64K and was over an order of magnitude faster than the 8008. The 8080 also moved to a 40-pin package that made interfacing easier, but the 8080 still required a large number of support chips to build a working system.

Although the 8080 was widely used in embedded systems, it is more famous for its use in the first generation of home computers, boxes such as the Altair and IMSAI. Famed chip designer Federico Faggin said that the 8080 really created the microprocessor; the 4004 and 8008 suggested it, but the 8080 made it real.13

Altair 8800 computer on display at the Smithsonian. Photo by Colin Douglas, (CC BY-SA 2.0).

Altair 8800 computer on display at the Smithsonian. Photo by Colin Douglas, (CC BY-SA 2.0).

The table below shows the instruction set for the 8080. The 8080 was designed to be compatible with 8008 assembly programs after a simple translation process; the instructions have been shifted around and the names have changed.15 The instructions from the Datapoint 2200 (colored) form the majority of the 8080's instruction set. The instruction set was expanded by adding some 16-bit support, allowing register pairs (BC, DE, HL) to be used as 16-bit registers for double add, 16-bit increment and decrement, and 16-bit memory transfers. Many of the new instructions in the 8080 may seem like contrived special cases— for example, SPHL (Load SP from HL) and XCHG (Exchange DE and HL)— but they made accesses to memory easier. The I/O instructions from the 8008 have been condensed to just IN and OUT, opening up room for new instructions.

 0123456701234567
0NOPLXI BSTAX BINX BINR BDCR BMVI BRLCMOV B,BMOV B,CMOV B,DMOV B,EMOV B,HMOV B,LMOV B,MMOV B,A
1 DAD BLDAX BDCX BINR CDCR CMVI CRRCMOV C,BMOV C,CMOV C,DMOV C,EMOV C,HMOV C,LMOV C,MMOV C,A
2 LXI DSTAX DINX DINR DDCR DMVI DRALMOV D,BMOV D,CMOV D,DMOV D,EMOV D,HMOV D,LMOV D,MMOV D,A
3 DAD DLDAX DDCX DINR EDCR EMVI ERARMOV E,BMOV E,CMOV E,DMOV E,EMOV E,HMOV E,LMOV E,MMOV E,A
4 LXI HSHLDINX HINR HDCR HMVI HDAAMOV H,BMOV H,CMOV H,DMOV H,EMOV H,HMOV H,LMOV H,MMOV H,A
5 DAD HLHLDDCX HINR LDCR LMVI LCMAMOV L,BMOV L,CMOV L,DMOV L,EMOV L,HMOV L,LMOV L,MMOV L,A
6 LXI SPSTAINX SPINR MDCR MMVI MSTCMOV M,BMOV M,CMOV M,DMOV M,EMOV M,HMOV M,LHLTMOV M,A
7 DAD SPLDADCX SPINR ADCR AMVI ACMCMOV A,BMOV A,CMOV A,DMOV A,EMOV A,HMOV A,LMOV A,MMOV A,A
0ADD BADD CADD DADD EADD HADD LADD MADD ARNZPOP BJNZJMPCNZPUSH BADIRST 0
1ADC BADC CADC DADC EADC HADC LADC MADC ARZRETJZ CZCALLACIRST 1
2SUB BSUB CSUB DSUB ESUB HSUB LSUB MSUB ARNCPOP DJNCOUTCNCPUSH DSUIRST 2
3SBB BSBB CSBB DSBB ESBB HSBB LSBB MSBB ARC JCINCC SBIRST 3
4ANA BANA CANA DANA EANA HANA LANA MANA ARPOPOP HJPOXTHLCPOPUSH HANIRST 4
5XRA BXRA CXRA DXRA EXRA HXRA LXRA MXRA ARPEPCHLJPEXCHGCPE XRIRST 5
6ORA BORA CORA DORA EORA HORA LORA MORA ARPPOP PSWJPDICPPUSH PSWORIRST 6
7CMP BCMP CCMP DCMP ECMP HCMP LCMP MCMP ARMSPHLJMEICM CPIRST 7

The 8080 also moved the stack to external memory, rather than using an internal fixed special-purpose stack as in the 8008 and Datapoint 2200. This allowed PUSH and POP instructions to put register data on the stack. Interrupt handling was also improved by adding the Enable Interrupt and Disable Interrupt instructions (EI and DI).14

Intel 8085

The Intel 8085 was designed as a "mid-life kicker" for the 8080, providing incremental improvements while maintaining compatibility. From the hardware perspective, the 8085 was much easier to use than the 8080. While the 8080 required three voltages, the 8085 required a single 5-volt power supply (represented by the "5" in the part number). Moreover, the 8085 eliminated most of the support chips required with the 8080; a working 8085 computer could be built with just three chips. Finally, the 8085 provided additional hardware functionality: better interrupt support and serial I/O.

The Intel 8085, like the 8080 and the 8086, was packaged in a 40-pin DIP. Photo by Thomas Nguyen, (CC BY-SA 4.0).

The Intel 8085, like the 8080 and the 8086, was packaged in a 40-pin DIP. Photo by Thomas Nguyen, (CC BY-SA 4.0).

On the software side, the 8085 is curious: 12 instructions were added to the instruction set (finally using every opcode), but all but two were hidden and left undocumented.16 Moreover, the 8085 added two new condition codes, but these were also hidden. This situation occurred because the 8086 project started up in 1976, near the release of the 8085 chip. Intel wanted the 8086 to be compatible (to some extent) with the 8080 and 8085, but providing new instructions in the 8085 would make compatibility harder. It was too late to remove the instructions from the 8085 chip, so Intel did the next best thing and removed them from the documentation. These instructions are shown in red in the table below. Only the new SIM and RIM instructions were supported, necessary in order to use the 8085's new interrupt and serial I/O features.

 0123456701234567
0NOPLXI BSTAX BINX BINR BDCR BMVI BRLCMOV B,BMOV B,CMOV B,DMOV B,EMOV B,HMOV B,LMOV B,MMOV B,A
1DSUBDAD BLDAX BDCX BINR CDCR CMVI CRRCMOV C,BMOV C,CMOV C,DMOV C,EMOV C,HMOV C,LMOV C,MMOV C,A
2ARHLLXI DSTAX DINX DINR DDCR DMVI DRALMOV D,BMOV D,CMOV D,DMOV D,EMOV D,HMOV D,LMOV D,MMOV D,A
3RDELDAD DLDAX DDCX DINR EDCR EMVI ERARMOV E,BMOV E,CMOV E,DMOV E,EMOV E,HMOV E,LMOV E,MMOV E,A
4RIMLXI HSHLDINX HINR HDCR HMVI HDAAMOV H,BMOV H,CMOV H,DMOV H,EMOV H,HMOV H,LMOV H,MMOV H,A
5LDHIDAD HLHLDDCX HINR LDCR LMVI LCMAMOV L,BMOV L,CMOV L,DMOV L,EMOV L,HMOV L,LMOV L,MMOV L,A
6SIMLXI SPSTAINX SPINR MDCR MMVI MSTCMOV M,BMOV M,CMOV M,DMOV M,EMOV M,HMOV M,LHLTMOV M,A
7LDSIDAD SPLDADCX SPINR ADCR AMVI ACMCMOV A,BMOV A,CMOV A,DMOV A,EMOV A,HMOV A,LMOV A,MMOV A,A
0ADD BADD CADD DADD EADD HADD LADD MADD ARNZPOP BJNZJMPCNZPUSH BADIRST 0
1ADC BADC CADC DADC EADC HADC LADC MADC ARZRETJZRSTVCZCALLACIRST 1
2SUB BSUB CSUB DSUB ESUB HSUB LSUB MSUB ARNCPOP DJNCOUTCNCPUSH DSUIRST 2
3SBB BSBB CSBB DSBB ESBB HSBB LSBB MSBB ARCSHLXJCINCCJNKSBIRST 3
4ANA BANA CANA DANA EANA HANA LANA MANA ARPOPOP HJPOXTHLCPOPUSH HANIRST 4
5XRA BXRA CXRA DXRA EXRA HXRA LXRA MXRA ARPEPCHLJPEXCHGCPELHLXXRIRST 5
6ORA BORA CORA DORA EORA HORA LORA MORA ARPPOP PSWJPDICPPUSH PSWORIRST 6
7CMP BCMP CCMP DCMP ECMP HCMP LCMP MCMP ARMSPHLJMEICMJKCPIRST 7

Intel 8086

Following the 8080, Intel intended to revolutionize microprocessors with a 32-bit "micro-mainframe", the iAPX 432. This extremely complex processor implemented objects, memory management, interprocess communication, and fine-grained memory protection in hardware. The iAPX 432 was too ambitious and the project fell behind schedule, leaving Intel vulnerable against competitors such as Motorola and Zilog. Intel quickly threw together a 16-bit processor as a stopgap until the iAPX 432 was ready; to show its continuity with the 8-bit processor line, this processor was called the 8086. The iAPX 432 ended up being one of the great disaster stories of modern computing and quietly disappeared.

The "stopgap" 8086 processor, however, started the x86 architecture that changed the history of Intel. The 8086's victory was powered by the IBM PC, designed in 1981 around the Intel 8088, a variant of the 8086 with a cheaper 8-bit bus. The IBM PC was a rousing success, defining the modern computer and making Intel's fortune. Intel produced a succession of more powerful chips that extended the 8086: 286, 386, 486, Pentium, and so on, leading to the current x86 architecture.

The original IBM PC used the Intel 8088 processor, a variant of the 8086 with an 8-bit bus. Photo by Ruben de Rijcke, (CC BY-SA 3.0).

The original IBM PC used the Intel 8088 processor, a variant of the 8086 with an 8-bit bus. Photo by Ruben de Rijcke, (CC BY-SA 3.0).

The 8086 was a major change from the 8080/8085, jumping from an 8-bit architecture to a 16-bit architecture and expanding from 64K of memory to 1 megabyte. Nonetheless, the 8086's architecture is closely related to the 8080. The designers of the 8086 wanted it to be compatible with the 8080/8085, but the difference was too wide for binary compatibility or even assembly-language compatibility. Instead, the 8086 was designed so a program could translate 8080 assembly language to 8086 assembly language.17 To accomplish this, each 8080 register had a corresponding 8086 register and most 8080 instructions had corresponding 8086 instructions.

The 8086's instruction set was designed with a new concept, the "ModR/M" byte, which usually follows the opcode byte. The ModR/M byte specifies the memory addressing mode and the register (or registers) to use, allowing that information to be moved out of the opcode. For instance, where the 8080 had a quadrant of 64 instructions to move from register to register, the 8086 has a single move instruction, with the ModR/M byte specifying the particular instruction. (The move instruction, however, has variants to handle byte vs. word operations, moves to or from memory, and so forth, so the 8086 ends up with a few move opcodes.) The ModR/M byte preserves the Datapoint 2200's concept of using the same instruction for memory and register operations, but allows a memory address to be provided in the instruction.

The 8086 also cleans up some of the historical baggage in the instruction set, freeing up space in the precious 256 opcodes for new instructions. The conditional call and return instructions were eliminated, while the conditional jumps were expanded. The 8008's RST (Restart) instructions were eliminated, replaced by interrupt vectors.

The 8086 extended its registers to 16 bits and added several new registers. An Intel patent (below) shows that the 8086's registers were originally called A, B, C, D, E, H, and L, matching the Datapoint 2200. The A register was extended to the 16-bit XA register, while the BC, DE, and HL registers were used unchanged. When the 8086 was released, these registers were renamed to AX, CX, DX, and BX respectively.18 In particular, the HL register was renamed to BX; this is why BX can specify a memory address in the ModR/M byte, but AX, CX, and DX can't.

A patent diagram showing the 8086's registers with their original names.  (MP, IJ, and IK are now known as BP, SI, and DI.) From patent US4449184.

A patent diagram showing the 8086's registers with their original names. (MP, IJ, and IK are now known as BP, SI, and DI.) From patent US4449184.

The table below shows the 8086's instruction set, with "b", "w", and "i" indicating byte (8-bit), word (16-bit), and immediate instructions. The Datapoint 2200 instructions (colored) are all still supported. The number of Datapoint instructions looks small because the ModR/M byte collapses groups of old opcodes into a single new one. This opened up space in the opcode table, though, allowing the 8086 to have many new instructions as well as 16-bit instructions.19

 0123456701234567
0ADD bADD wADD bADD wADD biADD wiPUSH ESPOP ESINC AXINC CXINC DXINC BXINC SPINC BPINC SIINC DI
1OR bOR wOR bOR wOR biOR wiPUSH CS DEC AXDEC CXDEC DXDEC BXDEC SPDEC BPDEC SIDEC DI
2ADC bADC wADC bADC wADC biADC wiPUSH SSPOP SSPUSH AXPUSH CXPUSH DXPUSH BXPUSH SPPUSH BPPUSH SIPUSH DI
3SBB bSBB wSBB bSBB wSBB biSBB wiPUSH DSPOP DSPOP AXPOP CXPOP DXPOP BXPOP SPPOP BPPOP SIPOP DI
4AND bAND wAND bAND wAND biAND wiES:DAA        
5SUB bSUB wSUB bSUB wSUB biSUB wiCS:DAS        
6XOR bXOR wXOR bXOR wXOR biXOR wiSS:AAAJOJNOJBJNBJZJNZJBEJA
7CMP bCMP wCMP bCMP wCMP biCMP wiDS:AASJSJNSJPEJPOJLJGEJLEJG
0GRP1 bGRP1 wGRP1 bGRP1 wTEST bTEST wXCHG bXCHG w  RETRETLESLDSMOV bMOV w
1MOV bMOV wMOV bMOV wMOV srLEAMOV srPOP  RETFRETFINT 3INTINTOIRET
2NOPXCHG CXXCHG DXXCHG BXXCHG SPXCHG BPXCHG SIXCHG DIShift bShift wShift bShift wAAMAAD XLAT
3CBWCWDCALLWAITPUSHFPOPFSAHFLAHFESC 0ESC 1ESC 2ESC 3ESC 4ESC 5ESC 6ESC 7
4MOV AL,MMOV AX,MMOV M,ALMOV M,AXMOVS bMOVS wCMPS bCMPS wLOOPNZLOOPZLOOPJCXZIN bIN wOUT bOUT w
5TEST bTEST wSTOS bSTOS wLODS bLODS wSCAS bSCAS wCALLJMPJMPJMPIN bIN wOUT b DXOUT w DX
6MOV AL,iMOV CL,iMOV DL,iMOV BL,iMOV AH,iMOV CH,iMOV DH,iMOV BH,iLOCK REPNZREPZHLTCMCGRP3aGRP3b
7MOV AX,iMOV CX,iMOV DX,iMOV BX,iMOV SP,iMOV BP,iMOV SI,iMOV DI,iCLCSTCCLISTICLDSTDGRP4GRP5

The 8086 has a 16-bit flags register, shown below, but the low byte remained compatible with the 8080. The four highlighted flags (sign, zero, parity, and carry) are the ones originating in the Datapoint 2200.

The flag word of the 8086 contains the original Datapoint 2200 registers.

The flag word of the 8086 contains the original Datapoint 2200 registers.

Modern x86 and x86-64

The modern x86 architecture has extended the 8086 to a 32-bit architecture (IA-32) and a 64-bit architecture (x86-6420), but the Datapoint features remain. At startup, an x86 processor runs in "real mode", which operates like the original 8086. More interesting is 64-bit mode, which has some major architectural changes. In 64-bit mode, the 8086's general-purpose registers are extended to sixteen 64-bit registers (and soon to be 32 registers). However, the original Datapoint registers are special and can still be accessed as byte registers within the corresponding 64-bit register; these are highlighted in the table below.21

General purpose registers in x86-64. From Intel Software Developer's Manual.

General purpose registers in x86-64. From Intel Software Developer's Manual.

The flag register of the 8086 was extended to 32 bits or 64 bits in x86. As the diagram below shows, the original Datapoint 2200 status flags are still there (highlighted in yellow).

The 32-bit and 64-bit flags of x86 contain the original Datapoint 2200 registers. From Intel Software Developer's Manual.

The 32-bit and 64-bit flags of x86 contain the original Datapoint 2200 registers. From Intel Software Developer's Manual.

The instruction set in x86 has been extended from the 8086, mostly through prefixes, but the instructions from the Datapoint 2200 are still there. The ModR/M byte was changed in 32-bit mode so the BX (originally HL) register is no longer special when accessing memory (although it's still special with 16-bit addressing, until Intel removes that in the upcoming x86-S simplification.) I/O ports still exist in x86, although they are viewed as more of a legacy feature: modern I/O devices typically use memory-mapped I/O instead of I/O ports. To summarize, fifty years later, x86-64 is slowly moving away from some of the Datapoint 2200 features, but they are still there.

Conclusions

The modern x86 architecture is descended from the Datapoint 2200's architecture. Because there is backward-compatibility at each step, you should theoretically be able to take a Datapoint 2200 binary, disassemble it to 8008 assembly, automatically translate it to 8080 assembly, automatically convert it to 8086 assembly, and then run it on a modern x86 processor. (The I/O devices would be different and cause trouble, of course.)

The Datapoint 2200's complete instruction set, its flags, and its little-endian architecture have persisted into current processors. This shows the critical importance of backward compatibility to customers. While Intel keeps attempting to create new architectures (iAPX 432, i960, i860, Itanium), customers would rather stay on a compatible architecture. Remarkably, Intel has managed to move from 8-bit computers to 16, 32, and 64 bits, while keeping systems mostly compatible. As a result, design decisions made for the Datapoint 2200 over 50 years ago are still impacting modern computers. Will processors still have the features of the Datapoint 2200 another fifty years from now? I wouldn't be surprised.22

Thanks to Joe Oberhauser for suggesting this topic. I plan to write more on the 8086, so follow me on Twitter @kenshirriff or RSS for updates. I've also started experimenting with Mastodon recently as @[email protected] so you can follow me there too.

Notes and references

  1. Shift-register memory was also used in the TV Typewriter (1973) and the display storage of the Apple I (1976). However, dynamic RAM (DRAM) rapidly dropped in price, making shift-register memory obsolete by the mid 1970s. (I wrote about the Intel 1405 shift register memory in detail in this article.) 

  2. For comparison, the popular PDP-8 minicomputer had just two main registers: the accumulator and a multiplier-quotient register; instructions typically operated on the accumulator and a memory location. The Data General Nova, a minicomputer released in 1969, had four accumulator / index registers. Mainframes generally had many more registers; the IBM System/360 (1964), for instance, had 16 general registers and four floating-point registers. 

  3. On the hardware side, instructions were decoded with BCD-to-decimal decoder chips (type 7442). These decoders normally decoded a 4-bit BCD value into one of 10 output lines. In the Datapoint 2200, they decoded a 3-bit value into one of 8 output lines, and the other two lines were ignored. This allowed the high-bit line to be used as a selection line; if it was set, none of the 8 outputs would be active. 

  4. These bit patterns map cleanly onto octal, so the opcodes are clearest when specified in octal. This octal structure has persisted in Intel processors including modern x86 processors. Unfortunately, Intel invariably specifies the opcodes in hexadecimal rather than octal, which obscures the underlying structure. This structure is described in detail in The 80x86 is an Octal Machine

  5. It is unusual for an instruction set to require memory addresses to be loaded into a register in order to access memory. This technique was common in microcode, where memory addresses were loaded into the Memory Address Register (MAR). As pwg pointed out, the CDC mainframes (e.g. 6600) had special address registers; when you changed an address register, the specified memory location was read or written to the corresponding operand register automatically.

    At first, I thought that serial memory might motivate the use of an address register, but I don't think there's a connection. Most likely, the Datapoint 2200 used these techniques to create a simple, orthogonal instruction set that was easy to decode, and they weren't particularly concerned with performance. 

  6. The instruction tables in this article are different from most articles, because I use octal instead of hexadecimal. (Displaying an octal-based instruction in a hexadecimal table obscures much of the underlying structure.) To display the table in octal, I break it into four quadrants based on the top octal digit of a three-digit opcode: 0, 1, 2, or 3. The digit 0-7 along the left is the middle octal digit and the digit along the top is the low octal digit. 

  7. The regular pattern of Load instructions is broken by the NOP and HALT instructions. All the register-to-register load instructions along the diagonal accomplish nothing since they move a register to itself, but only the first one is explicitly called NOP. Moving a memory location to itself doesn't make sense, so its opcode is assigned the HALT instruction. Note that the all-0's opcode and the all-1's opcode are both HALT instructions. This is useful since it can stop execution if the program tries executing uninitialized memory. 

  8. You might think that Datapoint and Intel used the same ALU operations simply because they are the obvious set of 8 operations. However, if you look at other processors around that time, they use a wide variety of ALU operations. Similarly, the status flags in the Datapoint 2200 aren't the obvious set; systems with four flags typically used Sign, Carry, Zero, and Overflow (not Parity). Parity is surprisingly expensive to implement on a standard processor, but (as Philip Freidin pointed out) parity is cheap on a serial processor like the Datapoint 2200. Intel processors didn't provide an Overflow flag until the 8086; even the 8080 didn't have it although the Motorola 6800 and MOS 6502 did. The 8085 implemented an overflow flag (V) but it was left undocumented. 

  9. You might wonder if the Datapoint 2200 (and 8008) could be considered RISC processors since they have simple, easy-to-decode instruction sets. I think it is a mistake to try to wedge every processor into the RISC or CISC categories (Reduced Instruction Set Computer or Complex Instruction Set Computer). In particular, the Datapoint 2200 wasn't designed with the RISC philosophy (make a processor more powerful by simplifying the instruction set), its instruction set architecture is very different from RISC chips, and its implementation is different from RISC chips. Similarly, it wasn't designed with a CISC philosophy (make a processor more powerful by narrowing the semantic gap with high-level languages) and it doesn't look like a CISC chip.

    So where does that leave the Datapoint 2200? In "RISC: Back to the future?", famed computer architect Gordon Bell uses the term MISC (Minimal Instruction Set Computer) to describe the architecture of simple, early computers and microprocessors such as the Manchester Mark I (1948), the PDP-8 minicomputer (1966), and the Intel 4004 (1971). Computer architecture evolved from these early hardwired "simple computers" to microprogrammed processors, processors with cache, and hardwired, pipelined processors. "Minimal Instruction Set Computer" seems like a good description of the Datapoint 2200, since it is about the smallest, simplest processor that could get the job done. 

  10. Many people think that the Intel 8008 is an extension of the 4-bit Intel 4004 processor, but they are completely unrelated aside from the part numbers. The Intel 4004 is a 4-bit processor designed to implement a calculator for a company called Busicom. Its architecture is completely different from the 8008. In particular, the 4004 is a "Harvard architecture" system, with data storage and instruction storage completely separate. The 4004 also has a fairly strange instruction set, designed for calculators. For instance, it has a special instruction to convert a keyboard scan code to binary. The 4004 team and the 8008 team at Intel had many people in common, however, so the two chips have physical layouts (floorplans) that are very similar. 

  11. In this article, I'm focusing on the Datapoint 2200 Version I. Any time I refer to the Datapoint 2200, I mean the version I specifically. The Version II has an expanded instruction set, but it was expanded in an entirely different direction from the Intel 8080, so it's not relevant to this post. The Version II is interesting, however, since it provides a perspective of how the Intel 8080 could have developed in an "alternate universe". 

  12. Federico Faggin wrote The Birth of the Microprocessor in Byte Magazine, March 1992. This article describes in some detail the creation of the 8008 and 8080.

    The Oral History of the 8080 discusses many of the problems with the 8008 and how the 8080 addressed them. (See page 4.) Masatoshi Shima, one of the architects of the 4004, described five problems with the 8008: It was slow because it used two clock cycles per state. It had no general-purpose stack and was weak with interrupts. It had limited memory and I/O space. The instruction set was primitive, with only 8-bit data, limited addressing, and a single address pointer register. Finally, the system bus required a lot of interface circuitry. (See page 7.) 

  13. The 8080 is often said to be the "first truly usable microprocessor". Supposedly the source of this quote is Forgotten PC history, but the statement doesn't appear there. I haven't been able to find the original source of this statement, so let me know. In any case, I don't think that statement is particularly accurate, as the Motorola 6800 was "truly usable" and came out before the Intel 8080.

    The 8080 was first in one important way, though: it was Intel's first microprocessor that was designed with feedback from customers. Both the 4004 and the 8008 were custom chips for a single company. The 8080, however, was based on extensive customer feedback about the flaws in the 8008 and what features customers wanted. The 8080 oral history discusses this in more detail. 

  14. The 8008 was built with PMOS circuitry, while the 8080 was built with NMOS. This may seem like a trivial difference, but NMOS provided much superior performance. NMOS became the standard microprocessor technology until the rise of CMOS in the 1980s, combining NMOS and PMOS to dramatically reduce power consumption.

    Another key hardware improvement was that the 8080 used a 40-pin package, compared to the 18-pin package of the 8008. Intel had long followed the "religion" of small 16-pin packages, and only reluctantly moved to 18 pins (as in the 8008). However, by the time the 8080 was introduced, Intel recognized the utility of industry-standard 40-pin packages. The additional pins made the 8080 much easier to interface to a system. Moreover, the 8080's 16-bit address bus supported four times the memory of the 8008's 14-bit address bus. (The 40-pin package was still small for the time; some companies used 50-pin or 64-pin packages for microprocessors.) 

  15. The 8080 is not binary-compatible with the 8008 because almost all the instructions were shifted to different opcodes. One important but subtle change was that the 8 register/memory codes were reordered to start with B instead of A. The motivation is that this gave registers in a 16-bit register pair (BC, DE, or HL) codes that differ only in the low bit. This makes it easier to specify a register pair with a two-bit code. 

  16. Stan Mazor (one of the creators of the 4004 and 8080) explained that the 8085 removed 10 of the 12 new instructions because "they would burden the 8086 instruction set." Because the decision came near the 8085's release, they would "leave all 12 instructions on the already designed 8085 CPU chip, but document and announce only two of them" since modifying a CPU is hard but modifying a CPU's paper reference manual is easy.

    Several of the Intel 8086 engineers provided a similar explanation in Intel Microprocessors: 8008 to 8086: While the 8085 provided the new RIM and SIM instructions, "several other instructions that had been contemplated were not made available because of the software ramifications and the compatibility constraints they would place on the forthcoming 8086."

    For more information on the 8085's undocumented instructions, see Unspecified 8085 op codes enhance programming. The two new condition flags were V (2's complement overflow) and X5 (underflow on decrement or overflow on increment). The opcodes were DSUB (double (i.e. 16-bit) subtraction), ARHL (arithmetic shift right of HL), RDEL (rotate DE left through carry), LDHI (load DE with HL plus an immediate byte), LDSI (load DE with SP plus an immediate byte), RSTV (restart on overflow), LHLX (load HL indirect through DE), SHLX (store HL indirect through DE), JX5 (jump on X5), and JNX5 (jump on not X5). 

  17. Conversion from 8080 assembly code to 8086 assembly code was performed with a tool called CONV86. Each line of 8080 assembly code was converted to the corresponding line (or sometimes a few lines) of 8086 assembly code. The program wasn't perfect, so it was expected that the user would need to do some manual editing. In particular, CONV86 couldn't handle self-modifying code, where the program changed its own instructions. (Nowadays, self-modifying code is almost never used, but it was more common in the 1970s in order to make code smaller and get more performance.) CONV86 also didn't handle the 8085's RIM and SIM instructions, recommending a rewrite if code used these instructions heavily.

    Writing programs in 8086 assembly code manually was better, of course, since the program could take advantage of the 8086's new features. Moreover, a program converted by CONV86 might be 25% larger, due to the 8086's use of two-byte instructions and inefficiencies in the conversion. 

  18. This renaming is why the instruction set has the registers in the order AX, CX, DX, BX, rather than in alphabetical order as you might expect. The other factor is that Intel decided that AX, BX, CX, and DX corresponded to Accumulator, Base, Count, and Data, so they couldn't assign the names arbitrarily. 

  19. A few notes on how the 8086's instructions relate to the earlier machines, since the ModR/M byte and 8- vs. 16-bit instructions make things a bit confusing. For an instruction like ADD, I have three 8-bit opcodes highlighted: an add to memory/register, an add from memory/register, and an immediate add. The neighboring unhighlighted opcodes are the corresponding 16-bit versions. Likewise, for MOV, I have highlighted the 8-bit moves to/from a register/memory. 

  20. Since the x86's 32-bit architecture is called IA-32, you might expect that IA-64 would be the 64-bit architecture. Instead, IA-64 is the completely different architecture used in the ill-fated Itanium. IA-64 was supposed to replace IA-32, despite being completely incompatible. Since AMD was cut out of IA-64, AMD developed their own 64-bit extension of the existing x86 architecture and called it AMD64. Customers flocked to this architecture while the Itanium languished. Intel reluctantly copied the AMD64 architecture, calling it Intel 64. 

  21. The x86 architecture allows byte access to certain parts of the larger registers (accessing AL, AH, etc.) as well as word and larger accesses. These partial-width reads and writes to registers make the implementation of the processor harder due to register renaming. The problem is that writing to part of a register means that the register's value is a combination of the old and new values. The Register Alias Table in the P6 architecture deals with this by adding a size field to each entry. If you write a short value and then read a longer value, the pipeline stalls to figure out the right value. Moreover, some 16-bit code uses the two 8-bit parts of a register as independent registers. To support this, the Register Alias Table keeps separate entries for the high and low byte. (For details, see the book Modern Processor Design, in particular the chapter on Intel's P6 Microarchitecture.) The point of this is that obscure features of the Datapoint 2200 (such as H and L acting as a combined register) can cause implementation difficulties 50 years later. 

  22. Some miscellaneous references: For a detailed history of the Datapoint 2200, see Datapoint: The Lost Story of the Texans Who Invented the Personal Computer Revolution. The 8008 oral history provides a lot of interesting information on the development of the 8008. For another look at the Datapoint 2200 and instruction sets, see Comparing Datapoint 2200, 8008, 8080 and Z80 Instruction Sets